skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Ling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The blood–brain barrier (BBB) is a main obstacle for drug delivery targeting the central nervous system (CNS) and treating Alzheimer's disease (AD). In order to enhance the efficiency of drug delivery without harming the BBB integrity, nanoparticle-mediated drug delivery has become a popular therapeutic strategy. Carbon dots (CDs) are one of the most promising and novel nanocarriers. In this study, amphiphilic yellow-emissive CDs (Y-CDs) were synthesized with an ultrasonication-mediated methodology using citric acid and o -phenylenediamine with a size of 3 nm that emit an excitation-independent yellow photoluminescence (PL). The content of primary amine and carboxyl groups on CDs was measured as 6.12 × 10 −5 and 8.13 × 10 −3 mmol mg −1 , respectively, indicating the potential for small-molecule drug loading through bioconjugation. Confocal image analyses revealed that Y-CDs crossed the BBB of 5-day old wild-type zebrafish, most probably by passive diffusion due to the amphiphilicity of Y-CDs. And the amphiphilicity and BBB penetration ability didn't change when Y-CDs were coated with different hydrophilic molecules. Furthermore, Y-CDs were observed to enter cells to inhibit the overexpression of human amyloid precursor protein (APP) and β-amyloid (Aβ) which is a major factor responsible for AD pathology. Therefore, data suggest that Y-CDs have a great potential as nontoxic nanocarriers for drug delivery towards the CNS as well as a promising inhibiting agent of Aβ-related pathology of the AD. 
    more » « less